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Abstract

This survey gives an overview of popular generative models used in the mod-
elling of stochastic temporal systems. In particular, thissurvey is organized into
two parts. The first part discusses the discrete-time representations of dynamic
Bayesian networks and dynamic relational probabilistic models, while the second
part discusses the continuous-time representation of continuous-time Bayesian
networks.

1 Introduction

Dealing with uncertainty in complex dynamic environments is a basic challenge to the operation
of real-world autonomous systems. These systems are highlycomplex, involving large numbers of
stochastic variables and many interacting nonlinear subsystems of possibly different time scales. An
autonomous system must be able to reason about the state of its components and environment in
order to create informed plans of intelligent action. To achieve this goal, system analysts have to
iterate between modelling and reasoning. First, one must develop a tractable model of the complex
system. This model will ideally extract out irrelevant details and encode information only about the
components that are central to the reasoning task. Next, given the model, one must design efficient
reasoning algorithms that exploit the information presented in the model to answer a variety of
queries about the system. These questions can be related to:

• State estimation and prediction:What is the system state at the current and any other future
timesteps?

• Event reconstruction:What past events triggered the phenomenon observed at this current
timestep?

• Anomaly/novelty detection:When was the onset of this new system behavior?

Depending on the performance of the inference, the model maybe re-evaluated and updated to en-
code new information or features that emerged in the temporal process. Inference is then performed
to reason about the updated model. This iterative procedurerepeats until some terminal time point.

In this survey, we will examine three popular Bayesian models of temporal processes: dynamic
Bayesian networks, dynamic probabilistic relational models, and continuous-time Bayesian net-
works. These models were developed by the artificial intelligence community, where the termdy-
namicis often used to describe a process whose state may change over time. In these models, only
the state of the system variables changes, while the causal relationships between the variables are
assumed constant. These causal relationships are made explicit in the graphical structure of these
Bayesian models, where nodes represent variables and directed links between nodes represent the
flow of influence from one variable to another. These models encode how variables evolve over time
and encapsulate conditional independencies between the variables.
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This survey is organized as follows. In Section 2, we introduce the notation that we will be using
throughout this survey. In Section 3, we describe the basic modelling assumptions. In Section
4, we discuss discrete-time representations of temporal processes, namely the dynamic Bayesian
network and its relational counterpart, the dynamic probabilistic relational model. In Section 5,
we discuss the continuous-time representation of continuous-time Bayesian networks. In Section 6,
we conclude with related works on social networks and otherstructurally dynamicrepresentations
that can model temporal processes, in which causal relationships between variables can change with
time.

2 Notation

In this section, we introduce the notation that will be used in our discourse. We use uppercase
letters to denote random variables, lowercase letters to denote their instantiations and uppercase
calligraphic letters to denote the variable domains. For example, given a binary variableZ ∈ {0, 1},
the domain ofZ isZ = {0, 1} andZ can either take on the valuez = 0 or z = 1.

We use boldface when referring to a collection or set of similar items. For example, given two
variablesZ1 andZ2, the collection of the two variables is referred to asZ = {Z1, Z2}. We also use
boldface for vectors, as vectors are usually the collectionof more than one element.

Subscripts and superscripts are heavily used in this survey. Time will always be indexed as a sub-
script. We useZt to denote a random variableZ at a specific timet, andZ0:t to denote the sequence
of theZ ’s state from time0 to time t. When referring to a particular variableZ in a collection of
variablesZ at a given timet, if Z occurs as thenth variable inZ, then the said variable will be
referred to asZn,t, where the variable indexn occurs as a subscript.

In general, superscripts are often reserved for indices that are specific to an inference algorithm.
When this is the case, the superscripts are usually enclosedin parentheses. For example, when an
inference algorithm represents the system state as a set of samples, then the index to a particular
sample will occur as a superscript, e.g.,Zt = z

(i)
t means that variableZ at timet is instantiated with

the value of theith sample. In addition to having a superscript to denote the sample index, some
algorithms, that employ clustering in their procedure, mayalso have a cluster index. To illustrate, if
a set of variablesZ belongs to a particular clusterc, then these variables at timet will be referred to
asZc

t .

Unless otherwise stated, the system state at timet will be denoted asSt. The system stateS may
consist of discrete-state random variablesZ, continuous-state random variablesX or a mixture of
the two. Observations are noisy measurements of the random variables and these observed variables
are denoted byY.

Lastly, we usep(·) to denote probability densities andP (·) to denote probability mass functions.

3 Basic assumptions

The system state at timet is represented asSt = {Zt,Xt}, where the state can consist of discrete
variablesZt and continuous variablesXt. To ground our discussion, let’s first assume that all
variables evolve at the same fixed time granularity, so that the temporal sequence of states is equally
spaced in time, i.e.,S0,S1, ...,St−1,St. This assumption can be relaxed later on, when dealing with
discrete-time processes of multiple time granularities and continuous-time processes.

The system evolves according to a first-order Markov processin which the current state captures all
of the memory in the process, so that there is no additional information in the past that can be used
to predict the future. This property is expressed as follows:

p(St|S0:t−1) = p(St|St−1), t = 1, 2, ... (1)
In addition, observations depend only on the current states:

p(Yt|S0:t) = p(Yt|St), t = 1, 2, ... (2)
Moreover, we assume that the probabilitiesp(St|St−1) andp(Yt|St) are stationary:

p(St|St−1) = p(Ss+t|Ss+t−1), s ≥ 0
p(Yt|St) = p(Ys+t|Ss+t), s ≥ 0

(3)
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With these assumptions, we can characterize the process by its transition modelp(St|St−1) and its
observation modelp(Yt|St).

The last assumption (Equation 3) is especially important because the invariance ofp(St|St−1) and
p(Yt|St) allows one to model the system using a static representation, such as the ones that we
will be examining in this survey. However, it is also a limiting assumption, since the process and
measurement mechanisms for a real-world system may drift over time, thus violating this assump-
tion. In Section 6, we will discuss alternative representations that lift this assumption. But for now,
we will assume that our temporal processes satisfy the aforementioned assumptions, as outlined in
Equations 1– 3.

4 Discrete-time representation

A common approach to modelling dynamic systems is to assume that systems evolve and are mea-
sured at equally spaced time steps. As a result, most systemsare modelled by a fixed time step
representation and estimation on these models is done at equally spaced time steps corresponding to
when state transitions or measurements may occur. This is the key idea behind representing dynamic
systems using discrete-time Markov processes.

. . . . . . . .St

Yt

t−2

Yt−2

S t−1

Yt−1

S

Figure 1: A simple discrete-time Markov process

Figure 1 shows a simple discrete-time Markov process with one state variable and one observed
variable. At each time stept, the previous stateSt−1 transitions to the current stateSt and a noisy
measurement ofSt is generated through the observed variableYt. The assumptions in Equation 1
and 2 directly apply here.

As we generalize to multivariate processes, we need a way of representing these processes in a
compact manner.

4.1 Dynamic Bayesian networks

In most multivariable processes, each variable is typically influenced by only a subset of the variables
in the system state. As a result, one can compactly representthe transition modelp(St|St−1) by the
product of each variable’s transition model:

p(St|St−1) =

N
∏

n=1

p(Sn,t|Pa(Sn,t)) (4)

whereN is the number of variables in the stateSt andPa(Sn,t) are theparentsof a particular
variableSn,t. A variable’s parents are defined as the subset of the state variables that affects that
variable. If a variable has parents, then its probability distribution will be conditional upon the
values of its parents. The variables at each time step are assumed to be topologically sorted, such
thatPa(Sn,t) ⊆ {S1,t−1, ..., SN,t−1} ∪ {S1,t, ..., Sn−1,t}. In other words, a parent of the variable
Sn,t can be any variable from the previous stateSt−1, or a variable in the current stateSt that would
not induce any cyclic dependencies.

Dynamic Bayesian networks (DBNs) [Dean and Kanazawa, 1989] allow for compact representations
of discrete-time Markov processes in the manner as prescribed in Equation 4. ADBN is a temporal
version of a Bayesian network (BN). BNs are directed graphical models that encode conditional
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dependencies between state variables via graphical structure. State variables are represented as
nodes and causal influences between variables are represented as arrows between nodes. Each node
St is associated with a given conditional probability distributionp(St|Pa(St)) that encapsulates the
conditional probability of that variable given its parentsPa(St). In essence, a node is conditionally
independent of its non-descendant nodes, given the values of its immediate parents.
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Figure 2: A simple Bayesian network

Figure 2 shows an example of a simpleBN. In this BN, the variableAt affects the variablesBt and
Ct, which in turn influences the variableDt. GivenBt andCt, the variableDt is independent of
At. This idea that the conditional distribution of a variable is completely specified by its parents is
important in simplifying the representation of the joint distribution of the variables. Applying the
chain rule of probability, the joint distribution is given by:

p(St) =

N
∏

n=1

p(Sn,t|S1,t, ..., Sn−1,t)
△
=

N
∏

n=1

p(Sn,t|Pa(Sn,t)) (5)

p(At, Bt, Ct, Dt) = p(Dt|At, Bt, Ct) · p(Ct|At, Bt) · p(Bt|At) · p(At)

= p(Dt|Bt, Ct) · p(Ct|At) · p(Bt|At) · p(At)

where the last line follows from the conditional independence between the variables.

The set of nodes representing the system state at a point in time is called atime slice. In a BN, all
nodes belong to the same time slice because aBN only models a probabilistic process at a particular
point in time. To represent the temporal evolution of a dynamic process from one time point to
another, aDBN has two sets of nodes, one that belongs to the current time slice and another that
belongs to a previous time slice. Nodes in the previous time slice can only have parents from the
same time slice while nodes in the current time slice can haveparents from both time slices. To
illustrate, we extend theBN from Figure 2 into aDBN and present its graphical structure in Figure 3.

From the figure, we see that the graphical structure of aDBN inherits the graphical structure of its
underlyingBN and includes extra structure that represents the temporal influence from the previous
time slice to the current time slice. Specifically, aDBN is defined by two components: a prior
Bayesian network that represents the probability distribution π0 over the initial state, and a2-time-
slice Bayesian network(2-TBN) that represents the transition distribution from states at time t − 1
to states at timet. Graphically, a 2-TBN is a fragment of a Bayesian network in which the nodes
belonging to the previous time slice have no parents. In our example, the 2-TBN for the DBN in
Figure 3 is shown in Figure 4. In a 2-TBN, only the nodes in the current time slice are associated with
conditional probability distributions. The 2-TBN represents the conditional distributionp(St|St−1)
that encodes the transition model of the Markov process as itevolves from the previous time slice
to the current time slice. In particular,p(St|St−1) is represented in a product form, as given in
Equation 4. For any terminal timeT of a process, the joint distribution of its state from time 0 to T
is given by:

p(S0 = s0,S1 = s1, ...,ST = sT ) = π0(s0) ·
T
∏

t=1

p(St = st|St−1 = st−1) (6)

In practice,p(·) is assumed to be a discrete probability distribution or a Gaussian distribution.
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Figure 3: Graphical structure of aDBN
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Figure 4: The 2-time-slice Bayesian network of theDBN in Figure 3
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4.1.1 Empirical investigations

For simpleDBNs with only a small number of variables and sparse interconnectivity between the
variables, it may be possible to apply exact inference techniques—the most popular of which are
variable elimination (VE) [Zhang and Poole, 1996] and junction tree propagation (JTP) [Lauritzen
and Spiegelhalter, 1988; Kjaerulff, 1992]. One can apply either of the two algorithms to compute the
answer to a probabilisticquery, of the form “What isp(U = u|V = v)?” whereU is commonly
referred to as the set of query variables andV is the set of observed variables.

The conceptual difference betweenVE andJTP is as follows:VE is a query-specific algorithm where
nodes that are irrelevant to a query can be pruned away, whileJTP is a more suitable algorithm
for answering multiple queries because the junction tree structure allows caching of computations,
which can be used to answer different queries but at the expense of higher memory requirements.
A comparison of these two methods is presented in[Zhang, 1998] for the inference of Bayesian
networks; the results of which also apply toDBNs. In particular, the study used theCPSCnetworks
[Pradhanet al., 1994], which are multi-level and multi-valued Bayesian networksdesigned for med-
ical diagnosis, as the basis for the experiments. BothVE andJTP were tested on fourCPSC-type
Bayesian networks that differ in the number of nodes, the average number of parents for a node,
and the average number of possible values for a node. Since both algorithms are exact methods (in
that, they yield the samecorrect probabilities for a given probabilistic query), they are equally as
accurate and the only difference between their performanceis the runtime. As a result, the runtime
is used as the performance metric in this study.

In general, it was found thatVE takes less or roughly the same runtime asJTP to compute the pos-
terior probabilities of twenty or less query variables, given a set of observations with twenty or less
observation variables. Moreover, as the network complexity increases,VE is preferred overJTPbe-
causeJTP simply cannot run in real time due to its immense memory requirement. Lastly, it was
found thatVE’s runtime increases with the number of observations whileJTP’s runtime decreases
with the number of observation variables. Although the runtimes ofVE andJTPboth increase with
the number of query variables, it was found thatVE’s runtime increases at a faster rate than that
of JTP. The reason is due to theJTP’s junction tree structure that allows computations for previ-
ous queries to be cached and be shared among different queries. As a result, in the case ofJTP,
the expected time for answering the next randomly generatedquery decreases with the number of
previous queries. Thus, as the number of observation variables and the number of query variables in-
crease,JTP’s average runtime for each separate query is faster whileVE’s average runtime is slower.
However, the limiting factor for usingJTP is that its immense memory requirement may render it
infeasible for real-time inference.

For DBNs with many number of variables, approximations to exact inference are the only way
to achieve real-time results. A popular approximation toJTP is the Boyen-Koller (BK) algo-
rithm [Boyen and Kollera, 1998], where the posterior distribution is approximated as a product
of marginals overC clusters,

p(St|y1:t) ≈
C
∏

c=1

p(Sc
t |y1:t) (7)

whereSc
t ⊆ St is the subset of state variables that belongs to clusterc. The clusters may be disjoint

or overlapping. The algorithm was tested on two real-lifeDBNs: theBAT network[Forbeset al.,
1995] and theWATER network[Jensenet al., 1989], as shown in Figure 5.

Both DBNs are popular benchmarks forDBN algorithm evaluation, where theBAT model was devel-
oped for monitoring highway traffic and theWATER model was for monitoring a water purification
plant. Each model was decomposed based on different clusterings and the performance metrics
were accuracy and runtime. Since the findings for both modelswere quite similar, we present only
a subset of the results for the 10-nodeBAT network in Table 1.

AlthoughBK works well in practice for small-sizedDBNs, the algorithm is ultimately hampered by
the underlying structure of the junction tree, which often demands an exorbitant amount of memory
as the complexity of theDBN scales up. To address this issue,[Murphy and Weiss, 2001] introduced
the factored frontier (FF) algorithm. TheFF algorithm is similar to the fully factored form ofBK,
which assumes a separate cluster for each variable in theDBN. For a process that spansT time steps
and is modelled by aDBN that hasN Q-ary state variables, whereF is the maximum fan-in (the
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Figure 5: Two popular discreteDBNs used for benchmarkingDBN algorithms: theBAT network
(left) and theWATER network (right). The dotted lines correspond to the clusterings used in theBK
experiments. Reproduced from[Boyen and Kollera, 1998].

Table 1: Empirical results of the Boyen-Koller algorithm ontheBAT network. The clustering scheme
denotes how the state variables were partitioned into groups orclustersused in the experiments from
from [Boyen and Kollera, 1998].

Clustering scheme Average error from true value Speedup in runtime
5+5 0.0006 15

3+2+4+1 0.015 20
3+3+4 0.13 20

number of incoming arcs) of any node, it takesO
(

TNQF+1
)

time for FF to computeP (St|y1:T ),

while it takesO
(

TNQ
√

N
)

for the fully factorized version ofBK.

Aside from BK and FF, another interesting approximation is presented in[Paskin, 2003], where
the framework ofthin junction treesis presented for approximate inference in the robotic task of
simultaneous localization and mapping (SLAM). SLAM is an important problem in mobile robotics,
because an autonomously mobile robot must map its surroundings and localize itself within its own
map. InSLAM, the hidden state of the systemSt represents the robot’s internal map, which includes
the state of the robot at timet and the locations of thent landmarks encountered by the robot up to
time t. The posterior distributionp(St|y1:t) is approximated by a multivariate Gaussian distribution
N (µt, Σt), whereµt represents the best estimate to the map andΣt is the error covariance to the
estimate. For each time step, standardJTPwould requireO

(

Nk2
)

space andO
(

Nk3
)

time, where
k is the width of the junction tree, defined as the size of the largest clique in the junction tree minus
one. In comparison, the thin junction tree filter requires only O (nt) space andO (nt) time, due the
constant thinning of the junction tree that reduces its width. In terms of accuracy, the thin junction
tree filter achieves similar results as the Kalman filter, which is the state-of-the-art method for exact
inference inSLAM, but with superior improvements in the computational resources demanded for
space and time.
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4.2 Hybrid-state systems

A hybrid-state system is a system that contains interactingdiscrete and continuous dynamics. The
discrete dynamics are described by probabilistic transitions to a countable (but usually finite) set of
discrete states. The continuous dynamics are described by differential or difference equations. In
most cases, the discrete state dictates the set of equationsunder which the continuous state evolves.
In return, the continuous state, upon satisfying some preset condition, may cause the discrete state
to autonomouslytransition from one state to another.

In a hybrid-state system, the state is denoted bySt = {Zt,Xt}, whereZt denotes the discrete-
state variables andXt denotes the continuous-state variables. LetYt denote observed variables. To
facilitate discussion, we focus on a concrete hybrid-statemodel, as shown in Figure 6.

t

Xt

YtYt−1

Xt−1

Zt−1 Z

Figure 6:DBN of a hybrid-state system

For simplicity, we assume that the stochasticity in the hybrid system stems purely from additive
white noise. Thus, the system is described by the following:

Zt ∼ P (Zt|Zt−1,Xt−1) (8)

Xt = FZt
(Xt−1) + Vt (9)

Yt = HZt
(Xt) + Wt (10)

where the process noiseVt ∼ N (0,Q) and the measurement noiseWt ∼ N (0,R) are mutually
independent.FZt

(·) is equivalent toF(·|Zt) but we have chosen the form ofFZt
(·) to make explicit

the parametrization byZt. The same applies forHZt
(·). For each distinct instantiation ofZt, FZt

(·)
andHZt

(·) comprise a unique set of equations that describes how the continuous variablesXt and
Yt evolve at each time.FZt

(·) andHZt
(·) are not assumed to be linear.

At each time, the discrete stateZt is influenced by bothZt−1 andXt−1. But what does it mean for
a discrete-state variableZ to be influenced by a continuous-state variableX? In many real-world
applications, the continuous-state variableXt−1 causes anautonomous transitionof the discrete
state fromZt−1 to Zt if Xt−1 satisfies some preset condition. Let’s take for example a carwith
automatic transmission. A car is a hybrid-state system because it has continuous-state quantities,
such as speed, and discrete-state quantities, such as the transmission gear ratio. A car at rest starts
from first gear and transitions to second gear when the speed exceeds 15 mph. If the speed is further
increased to 27 mph, the car will shift from second gear to third gear. In more precise terms: Let
X andZ represent the speed and the gear ratio respectively. For a given instantiation ofZt−1, there
is a guard functionon Xt−1 that determines a probability distribution over the discrete states for
Zt. In our car example, when the car is operating at first gear, the guard function over speed checks
whether the speed exceeds 15 mph:

g(Xt−1) =

{

False if Xt−1 < 15
True if Xt−1 ≥ 15

If the car is in first gear (Zt−1 = 1) and the speed does not exceed 15 mph (g(Xt−1) = False),
then the gear will stay in first gear (Zt = 1). This can be expressed as a probability distribution over
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the gear ratioZt:

P (Zt|Zt−1 = 1, Xt−1 < 15) = P (Zt|Zt−1 = 1, g(Xt−1) = False) (11)

=

{

1 if Zt = 1
0 otherwise (12)

In essence, the guard functiong discretizes the continuous-state parentXt−1 into a finite number
of states. As a result, the transition probabilityP (Zt|Zt−1, Xt−1) can now be defined as a Markov
transition matrixP (Zt|Zt−1, g(Xt−1)), whereZt−1 andg(Xt−1) are both discrete. For each in-
stantiation of(Zt−1, g(Xt−1)), P (Zt|Zt−1, g(Xt−1)) defines a vector of transition probabilities
over possible states forZt.

4.2.1 Empirical investigations

Due to nonlinear dynamics and complex coupling between the discrete and continuous variables,
it is not always obvious how one should proceed with exact inference when it comes to hybrid
DBNs. As a result, most applications resort to some form of MonteCarlo sampling techniques. The
most popular of these techniques for hybridDBN inference is the Rao-Blackwellized particle filter
(RBPF) [Doucetet al., 2000]. The idea ofRBPF is that, given aDBN with a tractable substructure
such that some of the variables can be marginalized out exactly from the posterior distribution,
sequential Monte Carlo methods, such as the particle filter (PF) [Andrieuet al., 2000], can be applied
to estimate the distribution over the rest of the variables.In particular, for hybrid-state systems, only
the discrete-state variables are sampled and the distribution over the continuous-state variables is
computed analytically, conditional on the sampled values of the discrete-state variables. To illustrate,
let’s re-examine the hybrid-state system shown in Figure 6.As shown in theDBN, the transition
model can be factored:

p(St|St−1) = p(Xt|Zt,Xt−1)P (Zt|St−1) (13)

Conditional onZt, the conditional posterior distributionp(Xt|Zt,y1:t) can be approximated by a
Gaussian distribution and the approximation can be computed analytically. (Under linear dynamics,
this approximation is unnecessary becausep(Xt|Zt,y1:t) is exactly Gaussian.) Thus, the belief
state can be expressed as follows:

p(St|y1:t) = p(Xt|Zt,y1:t)P (Zt|y1:t) (14)

≈ N (µt, Σt)P (Zt|y1:t) (15)

whereµt , E(Xt|Zt,y1:t) andΣt , cov(Xt|Zt,y1:t), which are estimated from variants of
Kalman filtering techniques, such as the extended Kalman filter [Grewal and Andrews, 2001] and
the unscented Kalman filter[Julier and Uhlmann, 1997; Wan and van der Merwe, 2001]. As for
P (Zt|y1:t), it is estimated by a set of weighted particles drawn from aproposal distribution1:

P (Zt|y1:t) ≈
M
∑

m=1

w
(m)
t δ

z
(m)
t

(Zt) (16)

whereδ(·) is the Dirac delta function.

A comprehensive empirical study ofRBPF for state estimation of a hybrid-stateDBN is presented
in [Andersenet al., 2004]. This study examined the effectiveness ofRBPF for fault diagnosis on a
simulated two-tank model, as shown in Figure 7. This model isoften used as the benchmark model
for fault diagnosis due to its simple physical interpretability and interesting nonlinear dynamics. In
addition, this model encapsulates common faults:

• Measurement faults: These faults occur when a sensor fail, causing measurements to be-
come extremely noisy.

• Burst faults: Theseabrupt faults occur when a pipe bursts, causing the pipe’s resistance to
change to some unknown value.

• Drift faults: Thesegradual faults occur as a result of normal wear-and-tear on a pipe, in
which the pipe’s resistance may drift to a non-calibrated value.
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Figure 7: Schematic of the two-tank system. Reproduced from[Andersenet al., 2004].

Figure 8: Hybrid-stateDBN of the two-tank system. Reproduced from[Andersenet al., 2004].

The DBN from Figure 8 shows the connections between the continuous system variables and the
discrete fault variables (shown asRF for burst/drift faults andMF for measurement faults). To
simplify the model, the pipe connecting the two tanks is constrained to not burst, which reduces the
discrete state space from 32,768 states to 18,432 states. Nonetheless, the model is still too complex
for exact inference methods to be feasible, so approximate inference is the only solution to state
estimation.

The fault diagnosis task is to estimate the value of the discrete fault variables. Since the dynamics
between the continuous variables and the discrete variables are coupled in this two-tank model, an
accurate state estimate for the continuous variables wouldmake it easier to track the discrete fault
variables, and vice versa. The main goal of this empirical study is to explore the possibilities of
RBPF for hybrid state estimation. In each experiment, the discrete variablesZt are sampled using
the standard particle filter, then the marginal probabilitydistribution of the continuous variables,
p (Xt|zt,y1:t), is estimated either by a variant of the Kalman filter, or by a specialized particle filter.

1Any probability distribution is a valid proposal distribution as long as it has the same support as the target
distribution, which in this case isP (Zt|y1:t). In other words, if the proposal distribution isq and the target
distribution isp, thenq(x) > 0 for anyx such thatp(x) > 0. In general, the closer the proposal distribution is
to the target distribution, the better the approximation ofthis sampling method.

10



In the specialized particle filter, the Kalman filter variantis used to update the proposal distribution,
which is assumed to be Gaussian, so that the proposal distribution would incorporate the information
from the most recent observation. This is in contrast to the standard particle filter, where the entire
stateSt is sampled from the proposal distributionp(St|St−1), which is stationary and does not
change with incoming observations.

The following algorithms were compared in terms of the root mean square error and the average
number of wrong failure estimates:

• PF: Standard particle filter in which bothZt andXt are sampled

• EKF: Rao-Blackwellized particle filter using the extended Kalman filter to estimateXt

• UKF: Rao-Blackwellized particle filter using the unscented Kalman filter to estimateXt

• PFUKF: Rao-Blackwellized particle filter using a particle filter,whose proposal distribution
is updated by the unscented Kalman filter, to estimateXt

The general recommendation from this study is thatPFUKF is the most preferred method for highly
nonlinear models, whose measurements are highly biased by noise and whose process and measure-
ment models may be inaccurate. This recommendation is basedon the following findings:

• PF and EKF could only estimate with reasonable accuracy the continuous variables that
are directly connected to the observation variables. In contrast, UKF does not have this
limitation.

• UKF and PFUKF are more affected by noise in the measurement model than in the pro-
cess model, due to the fact that estimates of the state dependdirectly on estimates of the
observed variables. In general,PFUKF outperformsUKF for high levels of measurement
noise, as shown in Figure 9.

• When using an inaccurate measurement model for state estimation, PFUKF is capable of
making more accurate estimates thanUKF. Nonetheless, both methods outperformPF.

Figure 9: Surface plots of root mean square error and fault estimation error for theUKF and the
PKUKF methods. Reproduced from[Andersenet al., 2004].
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4.3 Relational dynamic Bayesian networks

For domains with much repetitious structure,DBNs are not always the most efficient form of rep-
resentation. For example, in a university setting, where there are many students and professors,
each of theseentitiesare usually related to one another through similar relationships. If one were to
model every single aspect of student-to-student, faculty-to-student and faculty-to-faculty dynamics
using aDBN, one would need to spend much time initializing theDBN fragments that represent each
and every faculty and student, along with their inter-dynamics. It would be much more convenient if
one could represent general principles about their relationships with statements such as “For all pro-
fessors who are famous and well-funded, their students would have a higher likelihood of academic
success.” This generality can be achieved by extendingDBNs with the power of relational logic.

Relational logic allows one to reduce a large set of propositional statements into a single one that
encodes the same information with the concepts of entities and relations. With relational logic and
the use of quantifiers (such as the existential quantifier∃ and the universal quantifier∀), one can
now lift the restriction on Bayesian networks—the inability to represent general principles about
multiple similar objects, which can be applied in multiple contexts.

Probabilistic relational models(PRMs) [Getooret al., 2001] are the relational analogs to Bayesian
networks (BNs). WhileBNs define probability distributions over sets ofpropositionalinterpretations,
in terms of instantiations to attributes or random variables,PRMs define probability distributions over
sets ofrelational interpretations. In particular, one can viewBNs as a special case ofPRMs, whereby
a BN is a stripped-downPRM with only one class of entities and no relationships betweenentities.
To ground our discussion of dynamicPRMs, we will first explainPRMs in detail, then extendPRMs
to dynamicPRMs the same way we extendedBNs toDBNs. To simplify our discussion, we will only
be examining models with discrete-valued variables.

A schemais a relational specification of a system. Given that a systemis composed of basic entities
that are partitioned into classes, this set of classesC = {C1, C2, ..., Ck} constitutes the schema for
the system. Each classC in a schema is characterized by:

• a set ofpropositional attributesA(C) that encode the variables that comprise the classC;
each proposition attributeA.C ∈ A(C) assumes values from a fixed domainV(A.C).

• a set ofrelational attributesR(C) that encode the connections between classC and other
classes; each relational attributeC.R ∈ R(C) defines a mapping from the classC to the
power set2C′

of a target classC′ ∈ C. These relational attributes are also known as
reference slotsand can be composed together to formslot chainsto define functions from
entities to other entities to which they are indirectly related.

For example, theUniversity schema might represent the student/faculty body of a university, with
the classes corresponding to different types of denizens inthe university, such as tenured profes-
sors, tenure-track professors, adjunct professors, graduate students and undergraduate students. The
propositional attributes of an undergraduate student might include his/her major, his/her GPA, and
his/her interest in research and graduate school. The relational attributes of an undergraduate stu-
dent might include the graduate student who is acting as the TA, for a course taught by a adjunct
professor, who is in the same department as the undergraduate student’s major.

An instanceI of a schema is a set of entities, where each entity belongs to aclass in the schema, with
all propositional and relational attributes of each entityspecified. Going back to our example, an
instance of theUniversity schema might be a particular university, with all students and professors,
their characteristics and their relationships completelyspecified.

Formally, aPRM specifies a probability distribution over a set of instancesof a given schema. In
essence, it is a template: given a set of entities, aPRM defines a probability distribution over a set
of interpretations that involve these entities. But since there are infinitely many possible instances
to a given schema, it is more instructive to constrain the relational model by assuming apartial
instantiation and compute the marginal distribution over the remaining variables. This partial in-
stantiation is an incomplete specification of an instance ofa schema. One such partial instantiation
is arelational skeletonσ, that specifies the set of entities for each class, with all relational attributes
specified and all propositional attributes unspecified. In this framework, aPRM defines the proba-
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bility distributions over completionsI of any given skeleton, using the same principle oflocality of
influence—the idea that most variables are influenced by only a set of few variables.

Thus, aPRM for a schemaS is formally defined as follows. For each classC ∈ C and each proposi-
tional attributeA ∈ A(C):

• The set of variables that influenceC.A is the set of parentsPa(C.A) = {U1, ..., Up}. Each
U ∈ Pa(C.A) can either be a variable within the same class (i.e., has the form C.B) or
is an aggregationγ of variables outside the class that are referenced by a slot chainγ (i.e.,
has the formγ(C.γ.B))

• The conditional probability distributionP (C.A|Pa(C.A)) quantifies the causal effect that
Pa(C.A) has onC.A.

Putting all this together, we can derive an equivalent expression to Equation 5, forPRMs specified
by the skeletonσ:

P (I) =
∏

x∈σ

∏

A∈A(x)

P (Ix.A|IPa(x.A)) (17)

whereIx.A andIPa(x.A) denote the respective values ofx.A andPa(x.A) in the completionI.

Having definedPRM in detail, we are now ready to transform the static representation ofPRMs into
the temporal representation ofdynamic probabilistic relational models(DPRMs) [Sanghaiet al.,
2003]. This extension is completely analogous to the extension from BNs toDBNs. Just as aDBN is
defined in terms of its prior Bayesian network (that represents the probability distribution at time0)
and a 2-time-slice Bayesian network (that describes the evolution of states between time slices), a
DPRM for a relational schemaS is defined similarly by relational structures:

• a prior PRM M0 overI0, that represents the probability distributionπ0(I0) over the initial
instance ofS

• a 2-time-slicePRM (2-TPRM) M→, that represents the transition distributionP (It|It−1)
which describes the temporal evolution of instances from one time to the next.

A 2-TPRM is the relational analog for a 2-TBN. A 2-TPRM is a specialPRM, for which each class
C has been augmented with an extra relational attributeC.previous, with domainC. This extra
attribute allows one to capture the effect of time on a particular class. Specifically, for each classC
and for each propositional attributeA ∈ A(C), a 2-TPRM consists of:

• A set of parent variablesPa(C.A) = {U1, ..., Up}, where eachU ∈ Pa(C.A) can either be
a variable within the same class (i.e., has the formC.B) or is an aggregationγ of variables
outside the class that are referenced by a slot chainγ (i.e., has the formγ(C.γ.B)). The slot
chainγ can only contain the attributepreviousat most once. This enforces the first-order
Markov property of the temporal process.

• The conditional probability distributionP (C.A|Pa(C.A)), which quantifies the causal ef-
fect thatPa(C.A) has onC.A.

Thus, a DPRM defines a probability distribution over a temporal sequenceof instances
{I0, I1, ..., IT }, as follows:

P (I0, I1, ..., IT ) = π0(I0)

T
∏

t=1

P (It|It−1) (18)

(19)

To relateDBN to DPRM: a DBN is a special case of aDPRM, whose schema contains only one class of
entities and there are no relationships between entities other than the relational attributeprevious. As
a result,DRPMs are more general thanDBNs, but because of this fact,DPRMs pose more difficulties
in inference, as techniques forDBN inference may not scale well toDPRMs.
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4.3.1 Empirical investigations

Currently, the state-of-the-art methodology for inferring aboutDPRMs is to apply Rao-Blackwellized
particle filters[Doucetet al., 2000], along with clever tricks to efficiently cache probability vectors
using abstraction tree structures[Sanghaiet al., 2003].

In [Sanghaiet al., 2003], DPRMs were applied to fault detection in complex assembly plans.
The study compared the performance of the particle filter (PF) [Andrieu et al., 2000], the Rao-
Blackwellized particle filter (RBPF), and theRBPF with abstraction trees, in monitoring plan exe-
cution. The performance metric is the Kullback-Liebler (KL ) distance[Cover and Thomas, 1991],
which is a distance function between two probability distributions, usually from the true or reference
probability distribution to an approximate probability distribution estimated by non-exact methods.
Since the problem domain is too complex for exact methods to be applied, an approximation of the
KL -distance is used, which is adequate for measuring the relative differences between the approxi-
mate algorithms:

D̂(p||p̂) = −
1

S

S
∑

i=1

log p̂(x
(i)
t ) (20)

wherep̂ is the probability of theith sample computed from eitherPF or RBPF andS is taken to
be 10,000 in the experiments. Figure 10 shows the comparisonbetweenPF andRBPF, in terms of
the approximateKL -distance as defined in Equation 20, with varying fault probability and varying
number of objects in the problem domain.

Figure 10: Comparisons ofRBPF with 5000 particles andPF with 200,000 particles. The left plot
shows the results for 1000 objects and varying fault probability, denoted aspf in the graph. The
right plot shows the results for varying number of objects while keeping the fault probability fixed
atpf = 1%. Reproduced from[Sanghaiet al., 2003].

The efficiency ofRBPF was further improved by the use of abstraction trees. In the study, it was
found that the use of abstraction trees inRBPF reducedRBPF’s runtime and memory requirement
by a factor of 30 to 70. In contrast toPF, each sample from the abstraction-tree-basedRBPF took
6 times longer and 11 times the memory, compared to a sample processed byPF. But since much
more samples are needed byPF to reach a comparable accuracy toRBPF, the total amount of work
done byRBPFstill takes less time and memory.

Aside from fault detection, relational models have also been successfully applied to the modelling
of online user behavior in cyberspace. In[D’Ambrosioet al., 2003], PRMs were used to model the
relationships between entities that interact within an internet environment. Online user modelling
is interesting because it poses special challenges, such asthe fact that much data violate the iid
assumption on which most traditional machine learning algorithms are based. To illustrate: requests
(in the form of mouse clicks) are often dependent on previousrequests; sessions for a visitor are
dependent on other sessions; and page types are also correlated by their link structure and by the
navigation sequence of the online user.
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The study by[D’Ambrosio et al., 2003] examined the effectiveness of various models, from
Bayesian networks to increasingly sophisticatedDPRMs, in the prediction task of assessing whether
or not the current mouse click is the last click in a session. The experiments were based on a sample
web log of 6900 mouse clicks from a small e-commerce website and the performance metric was the
AUC ROC, defined as the area under the receiver operating curve, which is a graph of thesensitivity
(Equation 21) as a function of one minus thespecificity(Equation 22), for a binary classification
test.

sensitivity =
number of true positives

number of true positives + number of false negatives
(21)

specificity =
number of true negatives

number of true negatives + number of false positives
(22)

The first modelling attempt, in the form of a Bayesian networklearned from the data, is shown in
Figure 11. This model performed extremely poorly, resulting in only aROC AUC of 0.274, which is
even less than what could be achieved—aROC AUC OF0.5—by random guessing.

Figure 11: A static Bayesian network for predicting the lastpage of an internet session. Reproduced
from [D’Ambrosioet al., 2003].

By usingDPRMs, one can incorporate temporal dependencies into the model. In particular,DPRMs
allow for a more expressive representation of complex structured data and the recognition of user
behavior at different time scales. The initialDPRM (not shown) achieved anROC AUCof 0.71 and an
extension of thisDPRM (Figure 12) that includes a few additional links to model thedependencies
between page attributes, improved theROC AUC to 0.78.

5 Continuous-time representation

By representing a dynamic system as a discrete-time Markov process, one makes the implicit as-
sumption that the process evolves and is observed at regularly clocked time steps. However, this
assumption is unrealistic because events in the real world can occur at random times, thus violating
the fixed time step assumption, or gradually, in which case itis not clear how to fix the time steps to
adequately capture changes in the system.

In addition, the discrete-time representation with fixed time steps is simply inadequate for represent-
ing systems of multiple time granularities, which abound inthe real world. These complex systems
often consist of multiple subsystems that operate at different rates or time granularities. In order to
capture all state transitions and observations in the discrete-time representation, the time steps would
have to be fixed at the finest time granularity, which can be wasteful because inference would be per-
formed on the entire system at every time step even though thesystem remains unchanged during
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Figure 12: An extendedDPRM for predicting the last page of an internet session. Reproduced from
[D’Ambrosioet al., 2003].

most of these finely grained time steps. One solution would beto maintain separate discrete-time
representations for each time granularity. But this only works if the time granularities are known
beforehand and that subsystems evolve at fixed time steps according to their own time granularity.

An alternative approach is to avoid the issue of time granularities all together and consider time
as a continuous-state random variable instead of a pre-discretized quantity. In this framework, we
can represent processes whose state transitions and observations occur at random times. In essence,
if we were to take a discrete-state Markov process and alter its “clock” so that time points arrive
randomly, according to an exponential distribution, then the resulting process is a continuous-time
Markov process.

In this section, we will discuss continuous-time representations: continuous-time counterparts to the
discrete-time Markov process andDBNs. There is a large body of work on stochastic processes that
provides various calculi for reasoning about continuous-time stochastic processes. For a thorough
introduction to continuous-time stochastic processes andstochastic calculus, readers should refer to
[Karlin and Taylor, 1975; Karatzas and Shreve, 2004; Stroock, 2003].

5.1 Continuous-time Markov processes

A continuous-time Markov process is a process that obeys theMarkov assumption and treats time
as a non-negative, continuous quantity. The state space of acontinuous-time Markov process can
either be discrete-valued, real-valued or hybrid. Depending on the nature of the state space, the
process is characterized by a matrix of transition rates and/or a set of differential equations. These
representations are analogs of the transition probabilitymatrix and the difference equations that
characterize discrete-time processes.

In the continuous-time paradigm, discrete-state systems are modelled by continuous-time Markov
processes in the form of jump processes. A jump process is a process that makes instantaneous
transitions from one state to another at random times. Specifically, a continuous-time Markov jump
process is a random variableZt parametrized by timet ∈ [0,∞). Zt starts in an initial statez0 and
remains in this state for a random amount of time before it makes a transition to a different state.
The time thatZt stays in a particular state is exponentially distributed, due to the Markovian nature
of the process. A generic Markov jump process is depicted in Figure 13.
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Figure 13: A generic Markov jump processZt

Mathematically, a Markov jump processZt, with finite state spaceZ = {1, 2, ..., M}, is character-
ized by aM -by-M intensity matrix:

QZ =









−q1 q12 . . . q1M

q21 −q2 . . . q2M

...
...

. . .
...

qM1 qM2 . . . −qM









(23)

where

qij = lim
∆t→0

P (Zt+∆t = j|Zt = i)

∆t
, i 6= j (24)

qi =
∑

j: j 6=i

qij (25)

in which thetransition rateqij defines the probability per time unit that the system makes a transition
from statei to statej; andqi defines the total transition rate out of statei. Once the process enters a
particular statei, the amount of time that the process stays in statei is distributed according to the
exponential distribution

fi(t) = qi exp(−qit). (26)

When the process leaves statei, it enters the next statej with the transition probability:

Pij =

{ qij

qi

if i 6= j

0 otherwise
(27)

An intuitive way to interpret this representation is to assume that we have a continuous-time clock,
where each tick, denoting the passage of time, is modelled byan exponential random variable.
After an exponentially distributed amount of time has passed, the clock will tick and triggers the
system to jump to its next state according to the transition probabilities shown in Equation 27.
These probabilities are the same as the transition probabilities in a discrete-state Markov process. If
instead, our clock ticks at regularly spaced time steps, then our process would reduce to a discrete-
time Markov process.

This representation can be easily generalized to multivariate processes. When the discrete stateZ
consists of more than one variableZ, then we can either maintain separate jump processes for each
Z, if the Zs represent independent processes; or, representZ by a single jump process, whose state
space is the joint space ofZ and whose transition intensities would be given by a different intensity
matrix QZ. This joint intensity matrixQZ is defined similarly asQZ (Equation 23), where the
intensities inQZ are now defined over transitions from one joint statezi to another joint statezj .

For obvious reasons, continuous-time Markov processes with real-valued state space cannot be rep-
resented as jump processes. To capture all transition intensities between states, the intensity matrix
would need to be of infinite dimensions. Moreover, continuous-state systems rarely jump from one
state to another. Instead, their states form a continuum andthe evolution of these states are better
described by a set of equations.
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In discrete-time representations, continuous-state systems are modelled by a set of difference equa-
tions, of the form shown in Equations 9 and 10. In the continuous-time version, these difference
equations are replaced by differential equations, which can describe the state evolution at any point
in time, not just at fixed time steps. We denote the continuous-time, continuous-state process by the
state vectorXt, wheret ∈ [0,∞). Xt evolves according to the following dynamics:

dXt

dt
= F(Xt) + Vt (28)

and is observed throughYt, which depends on the current state:

Yt = H(Xt) + Wt (29)

F andH are functions that describe the deterministic parts ofXt’s transition and observation models.
The process and observation noises are given byVt andWt respectively, and their means and
covariances are defined as follows:

E[Vt] = 0, E[VtV
T
τ ] = Qt δ(t − τ)

E[Wt] = 0, E[WtW
T
τ ] = Rt δ(t − τ)

E[VtW
T
τ ] = 0

(30)

whereQt andRt are positive-definite covariance matrices, andδ(X) = lim
a→0

δa(X) is the Dirac

delta function that assigns0 to anyx 6= 0.

In either case of discrete or continuous state space, it is much simpler to assume that the continuous-
time Markov processes are time-homogeneous, meaning that the process evolves according to the
same intensity matrix or the same set of differential equations at any time. This assumption greatly
simplifies the representation, because only one set of time-invariant parameters is required to charac-
terize the process. This is a common assumption used in most representations of temporal processes,
including those that are discrete-time.

5.2 Continuous-time Bayesian networks

A continuous-time Bayesian network (CTBN) [Nodelmanet al., 2002] is the continuous-time analog
of a discrete-stateDBN. In the same way that aDBN provides a factored representation of a discrete-
time Markov process, aCTBN provides a compact representation for continuous-time discrete-state
Markov processes.

Let Z denote the discrete-state variables in the system. In discrete time, the transition model
P (Zt|Zt−1) is defined by the transition probability matrix over the joint states of the system. Using
a discrete-stateDBN, one can representP (Zt|Zt−1) compactly in a factored form, as a product of
conditional probability tables:

P (Zt|Zt−1) =
∏

n

P (Zn,t|Pa(Zn,t)) (31)

whereZn,t is thenth variable in the network andPa(Zn,t) are the parent variables toZn,t.

In a similar manner, one can do the same with intensity matrices in a continuous-time representation.
In continuous time, the joint intensity matrixQZ parametrizes the transition model:

P (Zt|Zs) = exp(QZ(t − s)) (32)

Assume that each variableZn,t is a continuous-time Markov jump process, characterized bythe
intensity matrixQZn

. Then one can write the continuous-time equivalent of Equation 31, as follows:

P (Zt|Zs) = exp(QZ(t − s)) (33)

= exp

(

∏

n

QZn|Pa(Zn)(t − s)

)

(34)

where

QZ =
∏

n

QZn|Pa(Zn) (35)
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The termQZn|Pa(Zn) is known as theconditional intensity matrix(CIM) for the variableZn. Like
a conditional probability table, aCIM encodes information about how a variable evolves given the
values of its parents. In particular, letZ be aM -ary random state variable and letU = Pa(Z)
be the set of parent variables that influenceZ. A CIM QZ is a set of intensity matrices, where for
each unique instantiation of the parent variablesU, there is a corresponding intensity matrix over
the states ofZ:

QZ|U =









−q1(U) q12(U) . . . q1M (U)
q21(U) −q2(U) . . . q2M (U)

...
...

. . .
...

qM1(U) qM2(U) . . . −qM (U)









(36)

As shown in Equation 35, we need a product operation that combinesCIMs together to form the joint
intensity matrixQZ. The product operation over twoCIMs is known asamalgamation, denoted
by the symbol(∗). Let QZ1|C1

andQZ2|C2
be two CIMs and denoteZ = Z1 ∪ Z2 andC =

(C1 ∪ C2)\Z.2 The productCIM

QZ|C = QZ1|C1
∗ QZ2|C2

(37)

is an intensity matrix whose:

• off-diagonal elements are zeros or intensities fromQZ1|C1
or QZ2|C2

• diagonal elements are negative sums of the rows’ off-diagonal elements, as shown in Equa-
tion 25

Adapting from[Nodelmanet al., 2002], the formal definition of amalgamation is as follows. Let:

• QZ|C(zi → zj |ck) be the element inQZ|C that corresponds to the transition intensity from
Z = zi to Z = zj , conditional onC = ck;

• z[Zl] be the projection ofz onto the variablesZl, so thatz[Zl] contains only the instantia-
tions toZl that are consistent withz;

• (zi, ck) be the joint instantiation given byZ = zi andC = ck;

• dH(zi, zj) be the Hamming distance between stateszi andzj , which represent the number
of single-variable transitions that it takes forZ to get fromzi to zj .

Then:

QZ|C(zi → zj

˛

˛ck) =

8

>

>

>

>

<

>

>

>

>

:

QZ1|C1
(zi[Z1] → zj [Z1]

˛

˛(zi, ck)[C1]) if dH(zi[Z1], sj [Z1]) = 1
QZ2|C2

(zi[Z2] → zj [Z2]
˛

˛(zi, ck)[C2]) if dH(zi[Z2], sj [Z2]) = 1

−
X

j: j 6=i

QZ|C(zi → zj

˛

˛ck) if i = j

0 otherwise

(38)

In the last case, the intensity is set to0 if there are more than one transition betweenzi andzj . This
is because the probability of simultaneous transitions by multiple variables in the same infinitesimal
point in time is zero.

The notion ofCIMs allows for factored representations of the joint intensity matrices and is central
to theCTBN representation. ACTBN is defined similarly to aDBN, where there are two components:

• A prior Bayesian network that represents the initial distribution over the initial state.

• A continuous transition model that encodes graphically thefactored representation of the
continuous-time transition model: it is a directed, possibly cyclic graph, where each node
Zn has incoming arrows from its parent nodesPa(Zn) and each node is associated with a
CIM that encodes howPa(Zn) affects the transition rate ofZn.

2The (\) operation denotes set subtraction, where given setsA andB, an elementc is in setA\B if and
only if c is in A but not inB.
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An obvious way to perform exact inference is to consider the joint system as a whole and operate
on the joint intensity matrix. However, this requires computing the joint intensity matrix, which is
exponential in the number of variables in the system. Thus, its sheer size prohibits practical use
of exact inference for continuous-time monitoring. Although one might try to exploit theCTBN’s
graphical structure to decompose the task of exact inference, as in the case forDBNs, the notion
of temporal dependence, or entanglement[Boyen and Kollera, 1998], between variables makes this
impossible. Instead, approximate techniques, based on junction tree propagation[Lauritzen and
Spiegelhalter, 1988] and expectation propagation[Minka, 2001], have been proposed in[Nodelman
et al., 2002; 2005] for CTBN inference.

5.2.1 Empirical investigations

Since the introduction ofCTBNs as a new modelling framework,CTBNs have been applied to many
interesting problem domains, including fault diagnosis, reliability analysis and activity recognition.
Aside from the inference methods referenced above, there have also been attempts in adapting par-
ticle filters toCTBNs for efficient and scalable inference of these continuous-time systems.

The first of these attempts was presented in[Ng et al., 2005], where the continuous-time particle
filter (CTPF) was introduced and applied to the fault diagnosis of an experimental Mars rover. The
fault diagnosis task was to detect wheel faults that might hamper the mobility of the rover. The rover
system was modelled as a hybrid-stateCTBN (Figure 14) and theCTPFalgorithm was applied on the
CTBN model. The state estimation results are shown in Figure 15, where each wheel’s true elevation
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Figure 14:CTBN of the experimental Mars rover used in the[Ng et al., 2005] study. Reproduced
from [Ng et al., 2005].

from ground level is plotted along side the estimate derivedfrom CTPF. In general, it was found
that CTPF is quite effective in tracking the rover system, despite itshighly nonlinear dynamics and
intermittent observations, which makes inference especially difficult because the state is observed
only at very sparse time points.

While CTPF updates the state at irregular intervals, as determined by the algorithm’s prediction of
events, the discrete-time particle filter (DTPF) performs an update at equally spaced intervals fixed by
a preset time granularity. To contrast the performance betweenCTPFandDTPF, the study compared
the two algorithms empirically on a smaller model, the results of which are shown in Figure 16. The
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Figure 15: State estimation results fromCTPFplotted against the true wheel elevations. Reproduced
from [Ng et al., 2005].

top two plots of Figure 16 show the results ofCTPFandDTPF, where both were ran using the same
parameters: the same number of samples and the same number ofupdates. Comparing the two plots,
it is obvious thatCTPF is better equipped to track oscillary behavior because it isable to allocate
updates to where it is most needed, i.e., when the state is rapidly changing. But since the runtime of
CTPF is higher thanDTPF (due to the increased complexity from working with the continuous-time
dynamics), it is only fair to compareDTPF with CTPF only if they have similar runtimes. In the
bottom two plots of Figure 16, the results ofDTPF with similar runtime asCTPFare shown.DTPF2
is the version ofDTPF with the increased number of samples but the same number of updates as
that ofCTPF. In contrast,DTPF3 is the version ofDTPF with the same number of samples asDTPF3
but increased number of updates. From theDTPF2 plot in Figure 16, one can see that the increase
in the number of samples only drove down the variance of the state estimate, but was ineffectual
in reducing the state estimate error. On the flip side, the increase in the number of updates helped
the state estimate significantly, as shown in theDTPF3 plot in Figure 16. Nonetheless,CTPF still
outperformsDTPF3 because its state estimate is more accurate and is with higher confidence.

Further investigation betweenCTBNs andDBNs is presented in[Boudali and Dugan, 2006] within
the framework of reliability modelling and analysis. This study extends previous work in reliability
modelling using discrete-time Bayesian networks (DTBNs), which generalizeDBNs in the sense that
time intervals can vary depending on the onset of events instead of fixed according to a given time
granularity. The study presents a methodology for converting a dynamic fault tree into aCTBN, and
outlines the advantages ofCTBNs overDTBNs for reliability modelling and analysis, as shown in
Table 2.

Aside from fault diagnosis and reliability analysis,CTBNs have also been applied to activity mod-
elling and comparisons betweenCTBNs andDBNs have also been made on that front. In[Nodelman
and Horvitz, 2003], CTBNs were applied to the prediction task of forecasting a computer user’s pres-
ence and availability. The focus of the research was to modeltwo common classes of user behavior:
the presence of a user at the computer, and if the user is present, the application that the user is
currently engaged in. To answer event-based and duration-related questions such as:

• When is this user next expected to be present at the computer?
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Figure 16: Comparisons betweenCTPFandDTPF. DTPF1 is parametrized with the same number of
samples and the same number of updates asCTPF, while DTPF2 is parametrized with more samples
andDTPF3 is parametrized with more updates. Reproduced from[Ng et al., 2005].

Table 2: Qualitative comparison betweenDTBNs andCTBNs. Adapted from[Boudali and Dugan,
2006].

Time representation
DTBN t ∈ N (discrete)
CTBN t ∈ R+ (continuous)

State representation

DTBN Zt = failure
△
= The fault occurred within the time interval((t − 1)∆, t∆]

CTBN Zt = failure
△
= The fault occurred instantaneously at timet

Advantages
DTBN Can be solved using standardBN inference methods
CTBN Close-form solution for system reliability, memory savings from representing

conditional probability distributions as parametric functions
Disadvantages

DTBN Approximate solution, high memory needs from storing conditional probability
distributions as multi-dimensional tables

CTBN No general-distributionBN inference engine

• When is the user expected to use a particular application?

• How much time is the user expected to stay at the computer?

• How much time before the user is expected to switch to a different application?

CTBNs were extended to work with a large class of phase distributions, thus generalizingCTBNs
beyond the exponential distributions to handle a wider class of probabilistic queries.

To compareCTBNs with DBNs, the expected loss is used as the performance metric. The expected
loss is defined as the expected value of the loss function given the distribution over when a transition
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will take place, and is used in place of the log likelihood, because the likelihoods ofCTBNs andDBNs
are not directly comparable. The study compared standardCTBNs and Erlang-basedCTBNs with
DBNs parametrized by different time granularities. For the Erlang-basedCTBNs, the experiments
used both 2 phase and 3 phase Erlang distributions. In general, it was found that the Erlang-2CTBNs
performed the best, followed byDBNs, then standardCTBNs. The Erlang-3CTBNs were found to
perform the worst. But since these models were learned by maximizing the log likelihood of data,
the learned parameters were not optimized for minimizing the expected loss. As a result, one must
examine other factors before deciding which model is indeedthe best.

For this particular problem domain, the study found thatDBNs with larger time granularities out-
perform those with smaller time granularities. In fact, as the time granularity approaches 0, the
performance ofDBN should approach that ofCTBN. This is shown in Figure 17, where the expected
loss is plotted against the transition time for the different models.

Figure 17: The expected loss as a function of the transition time for CTBNs andDBNs of different
time granularities, with mean transition time for all distributions equal to 2. Reproduced from
[Nodelman and Horvitz, 2003].

6 Conclusion

This survey provides an in-depth introduction to popular Bayesian models of temporal processes.
These Bayesian models have been well-studied and are commonly used to model temporal pro-
cesses, due to their easy interpretability and more importantly, the existing wealth of reasoning
and learning tools that have already been developed for them. However, one limiting restriction of
these models is that dynamics between variables are assumedunchanging over time. This is clearly
not practical in real-world applications, such as the stockmarket, as different entities may emerge
while others disappear, or as the nature or frequency of interactions between existing companies
may change over time due to economic trends. Unless these Bayesian models are updated as neces-
sary to reflect changes in the system dynamics, they would notbe very useful for temporal process
modelling of dynamic real-world processes.

As a result, we conclude with related works that directly model changing dynamics as part of their
representation. This idea of representing changing dynamics using graphical models is directly re-
lated to the theory of dynamic graphs, in which the structureof graphs change over time. Graph
theorists have studied the computational complexity of algorithms for these dynamic graphs[Deme-
trescuet al., 2005]. In addition, others have also studied dynamic graphs in thecontext of social
networks. In[Wasserman, 1980], strengths of relations between individuals or organizations are
represented by weighted links that evolve as a Markov process. In [Sarkar and Moore, 2005], the
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evolution of relationships within a social network is examined using an extension of the latent space
model[Hoff et al., 2002] to predict whether two entities will form a connection at a future timestep,
conditional on the relations that they had over past timesteps. In terms of applications, dynamic
graphs have been used to model communication networks for telecommunications fraud detection
[Volinsky et al., 2003] and to study the spread of epidemic diseases[Newman, 2002].
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